The durability of plastics is both the reason why they have become so wide-spread and why they pose environmental problems. In addition, they are mainly sourced from petroleum, making them non-renewable and contingent on geopolitics. Research groups worldwide work on both biodegradable and bio-sourced alternatives, but there often are issues with yield, purity and — as a result — associated production cost.
Kobe University bioengineer TANAKA Tsutomu says: “Most biomass-based production strategies focus on molecules consisting of carbon, oxygen and hydrogen. However, there are highly promising compounds for high-performance plastics that include other elements such as nitrogen, but there are no efficient bioproduction strategies. And purely chemical reactions inevitably generate unwanted byproducts.” PDCA, which stands for pyridinedicarboxylic acid, is such a candidate. It is biodegradable, and materials incorporating this show physical properties comparable to or even surpassing those of PET, which is widely used in containers and textiles. “Our group approached the challenge from a new angle: We aimed to harness cellular metabolism to assimilate nitrogen and build the compound from start to finish,” says Tanaka.
In the journal Metabolic Engineering, the Kobe University group now published that they achieved the production of PDCA in bioreactors at concentrations more than seven-fold higher than previously reported. Tanaka explains, “The significance of our work lies in demonstrating that metabolic reactions can be used to incorporate nitrogen without producing unwanted byproducts, thereby enabling the clean and efficient synthesis of the target compound.”